
Human Communication Technologies Laboratory

Changsong Shen, Steve Oldridge, Gregor Miller, Amir Afrah, and Sidney Fels
Department of Electrical and Computer Engineering, University of British Columbia

Acknowledgments: This research is funded by Precarn/IRIS, NSERC and Bell University Lab.

MOTIVATION: HOW VERSUS WHAT
Typical vision API’s expect programmers to specify how to solve
a problem. This leads to:
1. Difficultly creating compile and run-time acceleration
algorithms since details of the processes are already specified
leaving little freedom for optimization.
2. Poorly exploited best-available technologies due to
programmers not being aware of latest techniques.
Effectively, programmers need an API to specify what needs to
be done.
Under our what-oriented methodology for vision processing,
Open Vision Library (OpenVL) encapsulates interchangeable
behaviors through specification of a state machine. Application
developers decide what they want done by controlling the states
leaving the compiler/run-time implementations determine how to
do it.

OpenVL + VLUT =
A Portable Hardware-Accelerated Vision

System
OpenVL provides an abstraction layer for application
developers to specify the vision processing they want
performed rather than how they want it performed. VLUT is
created as a middleware layer to separate camera details,
events management and operating specific details from the
specification of the computer vision. By providing a hardware-
oriented middleware that supports different hardware
architectures for acceleration, OpenVL allows portability
without compromising performance.

Image-Based Comparator (IBC)
In the image-based comparison abstraction, users
are asserting whether or not pixels (tokens, etc.)
belong to a particular user-defined model, such as a
statistical model. Using this approach, users also
need to declare some criteria for whether or not the
pixel is a good fit.

Summary
Open Vision Library (OpenVL) consists of a
language model to support computer vision
applications that are reusable, scalable and can
be accelerated by hardware by different
vendors. The design and implementation of
OpenVL has migrated from orienting towards
the application programmer specifying how a
computer vision algorithm is implemented to
what they want done. Users benefit from these
semantics with improved performance,
reusability and scalability.
Some example algorithms have been
developed as a proof-of-concept to
demonstrate the OpenVL API syntax and some
of our architecture's critical concepts.

OpenVL Architectural Design
Input data to OpenVL is stored in an abstracted image block, which include RGB
planes. Output data is stored in layers of various type, with each block potentially
adding a new layer to the available set of data associated with the input image.
OpenVL consists of five main processing blocks. These are Registration,
Composition, Comparison, Regionalization, and Decomposition. By connecting and
configuring each of these components, a wide range of image processing and
understanding tasks can be accomplished.

Decompositor
In the decomposition abstraction, an object can be
represented by its shapes, appearances. and the
motion of the objects can be represented by motion
model. In User can specify properties of objects, and
then the decompositer finds elements that match the
description.

Regioner
In a regionalization abstraction,
pixels in binary input images
are grouped into different
regions according to user
defined criteria.

