
Towards a General Abstraction Through
Sequences of Conceptual Operations

Gregor Miller, Steve Oldridge and Sidney Fels

Human Communication Technologies Laboratory
University of British Columbia
Vancouver, Canada V6T1Z4

{gregor,steveo,ssfels}@ece.ubc.ca

http://hct.ece.ubc.ca

Abstract. Computer vision is a complex field which can be challenging
for those outside the research community to apply in the real world. To
address this we present a novel formulation for the abstraction of com-
puter vision problems above algorithms, as part of our OpenVL frame-
work. We have created a set of fundamental operations which form a
basis from which we can build up descriptions of computer vision meth-
ods. We use these operations to conceptually define the problem, which
we can then map into algorithm space to choose an appropriate method
to solve the problem. We provide details on three of our operations,
Match, Detect and Solve, and subsequently demonstrate the flexibility
of description these three offer us. We describe various vision problems
such as image registration and tracking through the sequencing of our op-
erations and discuss how these may be extended to cover a larger range
of tasks, which in turn may be used analogously to a graphics shader
language.

Keywords: OpenVL, Computer Vision, Abstraction, Language, Vision
Shader

1 Introduction

One of the main problems preventing widespread adoption of computer vision
is the lack of a formulation that separates the need for knowledge of a concept
from knowledge of algorithms. In this paper we present a first step towards an
abstraction layer over computer vision problems. We introduce a new abstraction
which allows us to describe common vision sub-tasks which we build upon to
represent more sophisticated problems.

We work on the basis that algorithms and their parameters are low-level
details with which a general user should not be concerned. The development of
our abstraction layers is motivated by four reasons: 1) access is subsequently
possible by those who are not experts in the field; 2) advances in the state-of-
the-art can be incorporated into existing systems without re-implementation;
3) multiple back-end implementations become possible, allowing development of

2 Gregor Miller, Steve Oldridge and Sidney Fels

hardware acceleration or distributed computing; and finally, 4) the abstractions
provide a mechanism for general comparison of algorithms, thereby contributing
to researchers in the field as well as general users.

This idea has been applied successfully in many other fields, notably the OSI
reference model in networking [7] and OpenGL in graphics [20]. We have previ-
ously developed abstractions within sub-categories of computer vision, including
access to and organisation of cameras [16], transport and distribution of vision
tasks [2], and investigating the benefits of separating management and analysis
of image data [1]. We also developed a conceptual framework for the effective
development of computer vision analysis interfaces [17] and began the develop-
ment of a vision shader language [18]; this paper presents advances on both of
these contributions. Our main contribution is a novel abstraction layer for sim-
pler access to sophisticated computer vision methods, presented in a general and
extensible framework developed specifically for computer vision.

OpenCV [3], Matlab and similar frameworks are extremely useful but do not
provide a user experience at the level we are proposing. These are libraries con-
sisting of algorithms with complicated parameters. For example, the excellent
OpenCV face detector [27] requires a large XML file (the result of extensive
training on images of faces) as well as other image-based parameters, and im-
plements a particular solution for a given set of training data (frontal faces only,
etc.). Our abstraction is not intended as a replacement for existing libraries, but
to complement them by providing a larger audience with access to the sophisti-
cated methods.

Our abstraction is formulated through recognition of the common tasks
within computer vision, abstracting these individually as operations (Section 3)
and then providing a mechanism to define sequences which represent a more
sophisticated task (Section 4). We provide detail on three of our operations
(Detect, Match, Solve) and demonstrate the flexibility that can be achieved
using such a small set.

2 Previous Work

Many attempts have been made to develop computer vision or image processing
frameworks that support rapid development of vision applications. Image Under-
standing systems attempted to make use of developments in artificial intelligence
to automate much of the vision pipeline [15, 13, 6]. The Image Understanding En-
vironment project (IUE) [19] in particular attempted to provide high-level access
to image understanding algorithms through a standard object-oriented interface
in order to make them accessible and easier to reuse. More recently the OpenTL
framework [22] has been developed to unify efforts on tracking in real-world
scenarios. All of these approaches essentially categorise algorithms and provide
access to them directly, which is at a lower-level than we are proposing in this
paper.

Visual programming languages that allow the creation of vision applications
by connecting components in a data flow structure were another important at-

Towards an Abstraction Through Sequences of Operations 3

tempt to simplify vision development [14, 25]. These contained components such
as colour conversion, feature extraction, spatial filtering, statistics and signal
generation, among others. Declarative programming languages have also been
used to provide vision functionality in small, usable units [26, 23], although they
are limited in scope due to the difficulty of combining logic systems with com-
puter vision. While these methods provide a simpler method to access and ap-
ply methods, there is no abstraction above the algorithmic level, and so users
of these frameworks must have a sophisticated knowledge of computer vision to
apply them effectively.

There are many openly available computer vision libraries that provide com-
mon vision functionality [3, 5, 10, 24, 28]. These have been helpful in providing
a base of knowledge from which many vision applications have been developed.
These libraries often provide utilities such as camera capture or image conversion
as well as suites of algorithms. All of these methods provide vision components
and algorithms without a context of how and when they should be applied, and
so often require expert vision knowledge.

One previous attempt at overcoming the usability problems associated with
image understanding is discussed in the RADIUS project [8], which employed
user-manipulated geometric models of the scene to help guide the choice of image
processing algorithms. This operates at a higher-level than our proposed method,
however it trades off power, breadth and flexibility to provide its abstraction.
The abstraction we present in this paper is aimed to be extensible enough to
provide accessible vision methods across the entire field.

3 Conceptual Operations

Many computer vision problems can be divided into smaller sub-problems and
solved by providing solutions to each sub-problem. This applies conceptually as
well as algorithmically and so we base our idea of operations on this principle.
We allow the user to conceptually describe vision tasks by dividing the problem
into conceptual sub-tasks, then the description is analysed and a suitable method
selected. For example, image registration is typically solved by matching identical
regions across images, and globally optimising for the alignment. There are many
different methods for each stage of this problem, and some which combine them
into a single step [21]. Under our approach, a user would describe the problem
as a correspondence search, followed by a global optimisation. Our abstraction
framework would then interpret this sequence and select the most appropriate
method. This is the main contribution of our work, since the abstraction may
select individual algorithms for match and solve, or one which does both, and
hides the details from the user. Not only does this lead to simpler access to
vision, but also opens the possibility of multiple implementations, by different
universities and companies, in both software and hardware.

Our operations use various inputs and outputs, task parameters and con-
straints, all of which contribute to the problem description. For example, in a
correspondence search (abstracted by our Match operation) we use constraints to

4 Gregor Miller, Steve Oldridge and Sidney Fels

Example Search Space ND NI Problem Description

(a) Image 1 0 Single match in source image
(b) Image 1 1 Single match in single other image
(c) Image 1 N Single match in each of N images (excluding source)
(d) Image K 1 K matches in single other image
(e) Image K N K matches in each of N images
(f) Set 1 |I| Single match from the set of images
(g) Set K |I| K matches from the set of images
(h) Set K N K matches from subset of N images
(i) Set K 0 K matches in source image

Table 1. Example variable values and the problem conditions described using Match. N
can easily be substituted for |I| to apply to all images rather than a subset. However,
this will not enable search within the source image: this is only accessible via the
explicitly defined cases in (a) and (i).

define the search space, problem parameters to indicate the number of matches
(in a given number of images) and variances to indicate the differences across
images. The operations are explained in the following section.

3.1 Operations

We have a small suite of operations we currently use to provide solutions for
detection, tracking, correspondence, image registration, optical flow, matting and
background subtraction. We do not attempt in this paper to provide a complete
and finished formulation - this is a piece of on-going work, and our current set is
intended to be a proof-of-concept which we will continue to expand upon. There
is also a substantial quantity of subtle tweaks and defaults which could be made
within an implementation; for this paper we are focussing on the abstraction,
and will extend the work in future to define details of a framework implementing
the abstraction.

Match: Our Match operator is used to extract a set of features F from a set
of images I (containing |I| images) and find correspondences among F . For a
given feature f ∈ F multiple correspondences may be found within I, or even
within a single image I ∈ I. The current problem defines which matches are
important so we have developed a set of constraints and parameters to describe
which features should be selected.

Problems which include correspondence can be described using three param-
eters: the number NM of matches required; the number NI of images to match
across (where NI ≤ |I|); and whether to return NM matches per image (in
which case NMNI matches are returned) or for F (where NM matches are re-
turned). NM can be specified as an exact, minimum or maximum requirement.
The distinction between per-image and entire-set correspondence allows us to
define problems which treat a set of images as a single input (such as image

Towards an Abstraction Through Sequences of Operations 5

Example Search Space ND NI Problem Description

(a) Image 1 1 Single detection in single image
(b) Image 1 N Single detection in each of N images
(c) Image K 1 K detections in single image
(d) Image K N K detections in each of N images
(e) Set 1 |I| Single detection from the set of images
(f) Set K |I| K detections from the set of images
(g) Set K N K detections from subset of N images

Table 2. Example variable values and the problem conditions described using Detect.
N can easily be substituted for |I| to apply to all images rather than a subset.

registration), require matches from some but not all images, and require unique
matches across the set or the images. We also include an option to allow search
within the feature’s source image (by default this is not the case) and an option
for the trade-off between feature strength against density of search.

An important aspect of the correspondence problem is applying the correct
method to account for variances across images. We can allow for spatial variance
and constrain the search for a match in other images using some distribution
over the surrounding area centred at the current feature. Other appearance-
based properties can be defined, such as variance in blur, intensity, scale, colour,
etc. which will aid in the selection of an appropriate method to determine cor-
respondence.

Match provides an abstraction over correspondence, which can be used as
an input to another operation to define a different task: typically it is used in
conjunction with Solve. In Section 4 we explore this relationship, examining the
problems which can be expressed using the two operations together with each
set of conditions.

We use the following notation for Match:

Match (Image|Set, Exact|Min|Max) [NM , NI] variances, images (1)

The user can choose between Image and Set for correspondence search, and then
Exact, Min or Max for the interpretation of NM . The variances are specified
as a distribution over a range (e.g. uniform, Gaussian) and the input is the set
of images. If NI is zero, the operation will only return matches in the image
from which the feature was generated (regardless of search space used). If NI

is one, the operation will return matches from one other image from the image
where the feature was generated. Table 1 outlines some possible descriptions and
corresponding results for our Match variables.

Detect: This operation is similar to Match except instead of conceptually
matching all features to all others, it finds image regions in the set of images
which match a user-supplied template. The template may be an example image
or a high-level description of a detection problem. It has similar constraints to

6 Gregor Miller, Steve Oldridge and Sidney Fels

Match and provides a set of detected image regions which match the provided
template. As with matching, a distinction must be made whether the number of
detections is in the context of every image or across the set of images.

We use the following notation for Detect:

Detect (Image|Set, Exact|Min|Max) [ND, NI] template, images (2)

Table 2 specifies a few of the different forms of detection which may be ex-
pressed using this abstraction. In (b), we specify a per-image search and ask for
a single result from a single image: this describes a search for a particular region
throughout a set of images, and returning the most likely detection. Example (c)
goes one step further and requests a single detection in each image. If this were
to be qualified with Min then the result would be at least one detection, however
likely or unlikely, from each image. (d) presents an interesting case, where mul-
tiple detections are requested in a single image. The user does not choose which
image this is: rather the framework decides which image had the best detections
and chooses these. From the table it can also be seen that the descriptions in
(b) and (f) are equivalent, since we are asking for a single detection from any
image (but only one) from the set in (b), and we are asking for a single detection
across the set of images in (f).

Solve: The Solve operation covers a wide range of functionality representative
of optimisation algorithms. Within the context of the computer vision problems
which we have so far explored the two solutions which may be solved for are
spatial transforms and correspondences. The role of this operation will continue
to expand as we abstract more problems and methods (e.g. we are working on the
problem of matting, where Solve is used to optimise the boundary between two
image regions). In both cases the input is a set of correspondences from Match

or a set of detections from Detect. The operation’s conceptual task description
is slightly different from those previous, because the type of output requested
is used as part of the description: currently we use the types of transforms
and matches. We also provide a variable NS to define how many solutions are
requested (although sometimes this is not required).

There are two distinct models for solutions returned by Solve: Local and
Global, and the meaning is dependent on the current context. If solving for a
transform with correspondences, local will return a transform per match (e.g. op-
tical flow) and global will return a transform per image (e.g. image registration).
If more than one match per feature is available, NS is used to determine how
many solutions should be returned. This allows the solution operation to take
existing matches into account and optimise over these as additional information
and provide the best solution. There is no problem type defined for finding a
solution using detections as input.

Solve may also be used to optimise the number of correspondences by con-
straining them to produce a subset of correspondences which are more accurate
with respect to the task, or to provide the most likely path through a set of

Towards an Abstraction Through Sequences of Operations 7

Sequence Table 1 Output Type Constraint Problem

(i) (c) Transform Global Registration [4]
(ii) (e) Transform Global Stochastic Registration [9]
(iii) (b) Transform Local Image differencing
(iv) (c) Transform Local Optical Flow [12]
(v) (e) Transform Local Stochastic Optical Flow [11]
(vi) (e) Matches Local Feature Tracking (local matches as prior)
(vii) (e) Matches Global Feature Tracking (all matches as prior)

Table 3. Problem types when sequencing a Solve with a Match operation. Registration
and optical flow become the most apparent choices for these scenarios, however with
additional abstractions this may lead to structure-from-motion, self-calibration and 3D
fusion.

images for a given match/detection (which is a form of tracking for a constraint
down to a unique match per image, although this is not very sophisticated).

We use the following notation for Solve:

Solve (Local|Global) [NS] (matches|detections) (transforms|matches) (3)

The solve operation is used in conjunction with other operators. In Section
4 we explore the relationship of the solve operator in conjunction with other
operations.

4 Sequencing Operations

Interpreting the sequence of our operations (and their associated inputs, outputs
and parameters) to infer the problem and select an appropriate method to solve
that problem is one of our contributions. Combining the operators Match and
Solve allows for the description of an even greater range of vision problems.
As with our investigation of detection, we have explored the intricacies of each
set of options on the vision problem. The flexible nature of our operations also
leads to combinations of options which are not associated with specific or well
known vision problems. We hope this will lead us to novel solutions to problems
which may be solvable with combinations of existing methods, or to provide
descriptions of problems which have yet to be investigated.

Table 3 demonstrates the different problem types when sequencing Match

then Solve operations for various parameters, based on the Match examples
defined in Table 1. The example in Table 3(i) states that given a set of images,
find a single correspondence in each of N images for each f ∈ I0, then globally
solve for a single transform per-image: this is a basic image registration. The same
formulation with a local solve would produce a set of transforms which provide
a measure of optical flow, defined in Table 3(iv). Variations of the parameters
allow us to describe image differencing, shown in Table 3(iii); we can also ask
for more than one match so that we can optimise for the best match later when
more data is available (Table 3(ii) and 3(v)).

8 Gregor Miller, Steve Oldridge and Sidney Fels

When solving for a set of correspondences the constraints placed on the
optimisation guide the reduction of or path through correspondences. We may
use the set of matches found for a given set of images as the prior for optimising
the path over the matches, for tracking, or for pruning the number of matches
using the appearance models of the matches as a prior to solve for the best match.
For example a set of detected objects with multiple detections per image may be
constrained by the last known position and motion model of a previous detection
in order to improve detection or to track an object. Similarly a set of features may
be constrained to reduce the set of features while maintaining features across the
image as we see in adaptive non-maximal suppression for image registration [4].
The examples in Table 3(vi) and 3(vii) are for the case where Solve is asked to
produce matches, in the case where Match returns multiple matches per feature.
The result is an optimisation of the path through the images for each feature; for
local, each path is evaluated individually, and for global each path is evaluated
with knowledge of the others.

5 Conclusion

We have presented our novel abstraction for various computer vision tasks through
our small and flexible set of operations which may be sequenced to infer a larger
problem. Our research is in the preliminary stages, investigating the effective-
ness of our abstraction for describing various low-level tasks within vision with
a view to expanding in the future to encompass successively more sophisticated
problems. With the detailed representations of Match, Detect and Solve we
have been able to describe correspondence, image registration, optical flow, de-
tection and primitive tracking. After the descriptions have been analysed and
the problem inferred, the abstraction may select an appropriate method to solve
the user’s problem.

This is a small part of a very large problem within computer vision, and
we are working to expand the language model, notation and the abstraction
to cover more issues, and expand the utility of our OpenVL framework. We
are simultaneously creating an implementation of the OpenVL framework which
provides the language model coupled with implementations of the vision tasks it
abstracts. With this framework we hope to provide computer vision to a much
larger audience in an intuitive and accessible manner.

References

1. A. Afrah, G. Miller, and S. Fels. Vision system development through separation of
management and processing. In Workshop on Multimedia Information Processing
and Retrieval. IEEE, December 2009.

2. A. Afrah, G. Miller, D. Parks, M. Finke, and S. Fels. Hive a distributed system
for vision processing. In Proc. 2nd International Conference on Distributed Smart
Cameras, September 2008.

3. G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly Media, Inc., 1st edition, October 2008.

Towards an Abstraction Through Sequences of Operations 9

4. M. Brown and D. G. Lowe. Recognising panoramas. Proceedings of the Ninth IEEE
International Conference on Computer Vision, 2:1218–1225, 16-16 Oct. 2003.

5. Camellia. http://camellia.sourceforge.net/.
6. R. Clouard, A. Elmoataz, C. Porquet, and M. Revenu. Borg: A knowledge-based

system for automatic generation of image processing programs. IEEE Trans. Pat-
tern Anal. Mach. Intell., 21:128–144, February 1999.

7. J. D. Day and H. Zimmermann. The OSI reference model. In Proceedings of the
IEEE, volume 71, pages 1334–1340, 1983.

8. O. Firschein and T. M. Strat. Radius: Image Understanding For Imagery Intelli-
gence. Morgan Kaufmann, 1997.

9. A. W. Fitzgibbon. Stochastic rigidity: Image registration for nowhere-static scenes.
Computer Vision, IEEE International Conference on, 1:662, 2001.

10. Gandalf. http://gandalf-library.sourceforge.net/.
11. S. Gupta, E. N. Gupta, and J. L. Prince. Stochastic formulations of optical flow

algorithms under variable brightness conditions. In In Proceedings of IEEE Inter-
national Conference on Image Processing, volume III, pages 484–487, 1995.

12. B. K. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence,
17(1-3):185 – 203, 1981.

13. C. Kohl and J. Mundy. The development of the image understanding environment.
In in Proceedings 1994 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 443–447. IEEE Computer Society Press, 1994.

14. K. Konstantinides and J. R. Rasure. The khoros software development environment
for image and signal processing. IEEE Transactions on Image Processing, 3:243–
252, 1994.

15. T. Matsuyama and V. Hwang. Sigma: a framework for image understanding in-
tegration of bottom-up and top-down analyses. In Proceedings of the 9th interna-
tional joint conference on Artificial intelligence - Volume 2, pages 908–915, San
Francisco, CA, USA, 1985. Morgan Kaufmann Publishers Inc.

16. G. Miller and S. Fels. Uniform access to the cameraverse. In International Con-
ference on Distributed Smart Cameras. IEEE, September 2010.

17. G. Miller, S. Fels, and S. Oldridge. A conceptual structure for computer vision. In
Conference on Computer and Robot Vision, May 2011.

18. G. Miller, S. Oldridge, and S. Fels. Towards a computer vision shader language.
In Proceedings of International Conference on Computer Graphics and Interactive
Techniques, Poster Session, SIGGRAPH 2011. ACM, August 2011.

19. J. Mundy. The image understanding environment program. IEEE Expert: Intelli-
gent Systems and Their Applications, 10(6):64–73, 1995.

20. J. Neider and T. Davis. OpenGL Programming Guide: The Official Guide to Learn-
ing OpenGL, Release 1. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1993.

21. S. Oldridge, G. Miller, and S. Fels. Mapping the problem space of image registra-
tion. In Conference on Computer and Robot Vision, May 2011.

22. G. Panin. Model-based Visual Tracking: the OpenTL Framework. John Wiley and
Sons, 1st edition, 2011.

23. J. Peterson, P. Hudak, A. Reid, and G. Hager. Fvision: A declarative language for
visual tracking, 2001.

24. A. R. Pope and D. G. Lowe. Vista: A software environment for computer vision
research, 1994.

25. Quartz Composer by Apple. http://developer.apple
.com/graphicsimaging/quartz/quartzcomposer.html.

10 Gregor Miller, Steve Oldridge and Sidney Fels

26. ShapeLogic. http://www.shapelogic.org.
27. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple

features. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, page 511, 2001.

28. VXL. http://vxl.sourceforge.net/.

